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Gauged Nonlinear Sigma Model in Light-Front
Frame: Hamiltonian and BRST Formulations
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A gauged nonlinear sigma model in one-space one-time dimension is considered in the
light-front frame. The theory is seen to possess a local vector gauge symmetry. The
light-front Hamiltonian and BRST formulations of this theory are investigated under
some specific light-cone gauges.

1. INTRODUCTION

The O (N) nonlinear sigma models (NLSM) in one-space one-time ({)—)
dimension (Calleret al, 1969; Candelagt al, 1985; Colemaret al., 1969;
Henneaux and Mezincescu, 1985; Kulshreslettel.,, 1993a; Maharana, 1983a,b;
Mitra and Rajaraman, 1990a,b; Ruehl, 1991a,b, 1993, 1995, 1996; Zamolodchikov
and Zamolodchikov, 1979), where the field sigma is a Nabmponent field,
provide a laboratory for the various nonperturbative techniques for example, 1/
expansion (Ruehl, 1991a,b, 1993, 1995, 1996), operator product expansion, and the
low energy theorems (Callezi al., 1969; Colemaset al,, 1969). These models are
characterized by features like the renormalization and asymptotic freedom com-
mon to that of quantum chromodynamics, and they exhibit a nonperturbative par-
ticle spectrum, have no intrinsic scale parameter, possess the topological charges,
and are very crucial in the context of conformal (Ruehl, 1991a,b, 1993, 1995, 1996)
and string-field theories (Candeltsal,, 1985; Henneaux and Mezincescu, 1985),
where they appear in the classical limit (Calgral.,, 1969; Colemaet al., 1969).

The Hamiltonian formulation of the gauge-non-invariant (GNI), O (N)-NLSM
in (14 1)-dimension, has been studied in Maharana (1983a) and its two gauge-
invariant (Gl) versions have been constructed in Kulshres#ttha(1993a), where
the Hamiltonian (Dirac, 1950, 1964) and Becchi—Rouet—Stora—Tyutini (BRST)
(Becchi et al, 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998;
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Kulshreshtha and Kulshreshtha, 1998; Kulshreshtd,, 1993b, 1994a,b,c, 1995,
1999; Nemeschanslat al,, 1988; Tyutin, 1975) quantization of these Gl models
has also been studied in detail (Kulshresh¢hal, 1993a). The NLSM studied

in Kulshreshtheet al. (1993a); Maharana (1983a,b); and Mitra and Rajaraman
(1990a,b) do not have any gauge fields in the theory. Corresponding to these
models (Kulshreshthat al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b); if we consider models involving the gauge field, as proposed in the
present paper, we obtain the so-called gauged-NLSM (GNLSM). In the present
paper, we propose to study such a GNLSM obtained by gauging the usual NLSM
(without involving the vector gauge field*(x, t)) (Kulshreshthaet al., 1993a;
Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b) and investigate its canon-
ical structure, constrained dynamics, and Hamiltonian (Dirac, 1950, 1964) and
BRST (Becchkt al., 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshtd., 1993b, 1994a,b,c, 1995,
1999; Nemeschanskst al, 1988; Tyutin, 1975) formulations in the light-front
(LF) frame on the hyperplanest = (x° + x!)/+/2 = constant (Dirac, 1949).

The Hamiltonian and BRST formulations of this GNLSM in the usual instant
form (IF) of dynamics (on the hyperplang$ = constant) (Dirac, 1949) has been
investigated (Kulshreshtha, 2001).

The IF theory (Kulshreshtha, 2001) is seen to possess a set of five first-class
constraints (where two constraints are primary and three are secondary) implying
that the theory is a Gl theory.

The LF theory under the present investigation is also seen to possess a set
of five first-class constraints, however—now having three primary constraints and
two secondary constraints—implying again that the theory under consideration is
a Gl theory. The LF Hamiltonian formulation of this GNLSM is investigated in
the present paper under some specific light-cone (LC) gauges.

However, in the usual Hamiltonian formulation of a Gl theory under some
gauge-fixing conditions, one necessarily destroys the gauge invariance of the the-
ory by fixing the gauge (which converts a set of first-class constraints into a set of
second-class constraints, implying a breaking of gauge invariance under the gauge
fixing). To achieve the quantization of a Gl theory such that the gauge invariance
of the theory is maintained even under the gauge fixing, one goes to a more gen-
eralized procedure called the BRST formulation (Beethal,, 1974; Henneaux
and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshthaet al,, 1993a,b, 1994a,b,c, 1995, 1999; Nemescharsky., 1988;
Tyutin, 1975). In the BRST formulation of a Gl theory, the theory is rewrit-
ten as a quantum system that possesses a generalized gauge invariance called
the BRST symmetry. For this, one enlarges the Hilbert space of the GI theory
and replaces the notion of the gauge transformation, which shifts operators by
c-number functions by a BRST transformation that mixes the operators having
different statistics. In view of this, one introduces new anticommuting variables
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andc called the Faddeev—Popov ghost and antighost fields, which are Grassmann
numbers on the classical level and operators in the quantized theory, and a commut-
ing variableb called the Nakanishi-Lautrup field (Becettial,, 1974; Henneaux

and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshtaet al,, 1993b, 1994a,b,c, 1995, 1999; Mitra and Rajaraman, 1990a,b;
Nemeschanskgt al,, 1988; Tyutini, 1975).

Inthe BRST formulation of atheory one thus embeds a Gl theory intoa BRST-
invariant system, and the quantum Hamiltonian of the system (which includes the
gauge-fixing contribution) commutes with the BRST charge opeftas well
as with the anti-BRST charge opera@r The new symmetry of the system (the
BRST symmetry) that replaces the gauge invariance is maintained (even under
gauge fixing) and hence projecting any state onto the sector of BRST and anti-
BRST invariant states yields a theory that is isomorphic to the original Gl theory.
The unitarity and consistency of the BRST-invariant theory described by the gauge-
fixed quantum Lagrangian is guaranteed by the conservation and nilpotency of the
BRST chargeQ.

Inthe next section, we briefly recapitulate the basics of the usual O (N)-NLSM
(without gauge fields) (Kulshreshtletal,, 1993a; Maharana, 1983a,b; Mitra and
Rajaraman, 1990a,b) as well as that of the GNLSM in the instant form of dynamics
(Kulshreshtha, 2001). In Section 3, we study the Hamiltonian formulation of the
proposed GNLSM in the LF frame, and in Section 4, its BRST formulation under
some specific light-cone gauges. The summary and discussions are finally given
in Section 5.

2. A RECAPITULATION OF THE NONLINEAR SIGMA MODEL
(NLSM) IN THE INSTANT FORM (IF)

2.1. The Usual (Ungauged) Theory

The O (N)-nonlinear sigma model in one-space one-time dimension in the
usual IF (i.e., on the hyperplang$ = constant) is described by the action (Callen
etal., 1969; Candelast al., 1985; Colemastal., 1969; Henneaux and Mezincescu,
1985; Kulshreshthat al, 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b; Ruehl, 1991a,b, 1993, 1995, 1996; Zamolodchikov and Zamolodchikov,
1979)

S= / Ndxdt (2.1a)
, 1
N = |:§8Mcrk8“ak + (0 — 1)} ; k=1,2...,N (2.1b)

N = E(&ﬁ—ak’z)ﬂ(af—l)}; k=1,2,...,N (2.1¢)
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here o = [ok(X,t);k =1, 2,..., N] is a multiplet of N real scalar fields in
(1 + 1)-dimension and.(x, t) is another scalar field. The overdots and primes
denote the time and space derivatives respectively. The dibtdt) maps the
two-dimensional space-time into tihedimensional internal manifold whose co-
ordinates arek(x, t). This model is seen to possess a set of four second-class
constraints (Kulshreshtha al, 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b):

p1=pP.~0 (2.2a)
p2=[of —1]~0 (2.2b)
03 =20 Iy ~ 0 (2.2¢)
pa = (211 + 41 0 + 201 0)) ~ 0 (2.2d)

where p; is a primary constraint ang,, p3, and p4 are secondary constraints.
Here Ik and p; are the momenta canonically conjugate respectivelytand

A. The nonvanishing equal-time Dirac brackets (DBs) of the theory are given by
Kulshreshthaet al. (1993a) and Maharana (1983a)

{Te(x), Mm (Y)}o = ;—21 [o¢ () Mm(y) — Me(X)om(y)] 6(x —y)  (2.3a)
k

000 Tnlo = [ — “C05 0 561 ), (230

k
For achieving the canonical quantization of the theory, one encounters the problem
of operator ordering while going from DBs to the commutation relations. This
problem could, however, be resolved as explained in Kulshregttak(1993a)
and Maharana (1983a,b) by demanding that all the fields and field momenta after
guantization become Hermitian operators and that all the canonical commutation
relations be consistent with the hermiticity of these operators (Kulshreshitha
1993; Maharana, 1983a,b).

2.2. The Gauged Nonlinear Sigma Model (GNLSM)

Inone of our earlier papers (Kulshreshtha, 2001), we have studied the GNLSM
in the instant form (IF) of dynamics on the hyperplands= constant. This
IF-GNLSM is described by the action in (@ 1)-dimension (Kulshreshtha,
2001).

szfzmm (2.4a)
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) 1 1
< = |:§3ﬂo'kay'0'k + )»(O'kz — 1) — ZF/WFMU —eA, "ok
1 2
5 AN (2.4b)
e 1., 2 2 1 . 7\2 o /
1e2 2 2
+ > (A5 — A)) (2.40)
FrYo = (0" A" — 3" AY); g"’ :=diag(+1, —-1). (2.4d)

In the previous equation, the first term corresponds to a massless boson (which is
equivalent to a massless fermion), the second term is the usual term involving the
nonlinear constraintoZ — 1 ~ 0) and the auxiliary field., the third term is the
kinetic energy term of the electromagnetic vector-gauge #el¢k, t), the fourth
term represents the coupling of the sigma field to the electromagnetic field, and
the last term is the mass term for the vector gauge bdsdr, t) and contains the
signature of regularization.

This theory is seen to possess a set of five constraints (Kulshreshtha,
2001):

Q1 =TIp~0 (2.5a)
QL=p~0 (2.5b)
Q3 =[E —ell] 0 (2.5¢)
Qu=[0—1]~0 (2.5d)
Q5 = [20¢I1k + 2 Ayox] = 0 (2.5€)

where the first two constrainf; and<2, are primary constraints and the last three
Q3, 24, andQ2s are secondary. Alsdly, p,., 1o, andE are the momenta canonically
conjugate respectively tox, A, Ag, and A;. The matrix of the Poisson brackets
of the constraint€2; namely Mg (z, Z) := {Q4(2), 25(Z)}, is then calculated.
The inverse of the matriM,g does not exist and therefore the matrix is singular
implying that the set of constraingg; is first-class and that the theory described
by ¥ 'is a Gl theory (Mitra and Rajaraman, 1990a,b). In fact, the action of theory
is seen to be invariant under the local vector gauge transformation (LVGT):

So=e8(x, 1),  SAL=p8(x1),  8Ac=A(X 1) (2.6a)
sh=—B(x,1), O8Iy =0E =5Ig=2ap, =0 (2.6b)
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du = 9gdpB(X, t), 8V = —0dgdpB(X, ) (2.6c)
(Snu = O, (SHV = O (2.6d)
whereg = B(x, t) is an arbitrary function of its arguments. The generator of the
LVGT is the charge operator of the theory

3= / % = / d{eB(Sx — eA) + B (A — AY)] 2.7)

and the current operator of the theory is

3= / jidx= / dfep(—o, +eA) — f(Ai— A (28)

The divergence of the vector—current density, nandgli/* is therefore seen to
vanish under the gauge constraipt~ 0. This implies that the theory possesses
at the classical level, a local vector gauge symmetry (LVGS) under the gauge
constraint. ~ 0, which is, in fact, equivalent to the temporal or time-axial kind of
a gauge for the coordinate

The nonvanishing equal-time commutators of the theory, for example, under

the gauge¥’ = A = 0 are obtained as (Kulshreshtha, 2001):
(Ao Taly)] = | 5 [ 0= 2.9
[ ] = | ]3¢9 (2.90)
(A0, B =150~ y) 2.90)
(Ao, Al = | 5 3¢~ ) @90
1M000, Tl =1 3 |36x =) 299

3. THE GNLSM IN THE LF FRAME

To study the theory in the LF frame, that is on the hyperplaries: (x° +
x1)/+/2 = constant, one defines the coordinatés.= [(x° &+ x1)/+/2], and then
writes all the quantities involved in the action in termskéfinstead ofx® andx?
(Dirac, 1949). The action of the theory in the LF frame thus reads

S:f Zdxt dx (3.1a)
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<= |:(8+ak)(80k) + (02— 1) + %(m At —5_A")?

— e[ A (0_ok) + AT (0,0v)] + AT A} (3.1b)

AT = Ar = (Aot A)/V2;,  diox = (Ox £0))/V2. (3.1c)

As shown previously, in (3.1b), the first term corresponds to a massless boson
(which is equivalent to a massless fermion), the second term is the usual term
involving the nonlinear constraintdf — 1) ~ 0] and the auxiliary field., the third
term is the kinetic energy term of the electromagnetic vector-gaugeAijgld, t),
the fourth term represents the coupling of the sigma field to the electromagnetic
field, and the last term is the mass term for the vector gauge bygon

The Euler-Lagrange equations obtained frefi{3.1) are

[20,0_ 0] = [€(0+ AT + 0_ A7) + 24 oy (3.2a)

[0, (0, A" —0_AT)] = [€A — e(d,0)] (3.2b)
[0_(0; At — 8_A7)] = [e(0_ok) — €?AT] (3.2¢)
[6f —1] =0. (3.2d)

3.1. The Hamiltonian Formulation

The light-cone canonical momenta for the above LC-GNLSM obtained from
< are

My = 8(;;() = [0_ox — eA"] (3.3a)
P = a(gj) = (3.3b)
nt .= a(a{ii) = (3.3¢)
I = a(aii) =[a, AT —0_AT] (3.3d)

here,IT*, I1~, Ik, and p; are the momenta canonically conjugate respectively
to A-, AT, ok, andA. Also these equations imply that the theory possesses three
primary constraints:

xi=T+~0 (3.4a)
x2= P ~0 (3.4b)
x3 =[x — d_ox + eA"] ~ 0. (3.4¢)
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The canonical Hamiltonian density corresponding£ads

e = [Mk(8401) + (34 A7) + T (31 AT) + pr(84:4) — <]
- B(H)Z + T (_A") —eA (d_ox) — Ao — 1) — e2A+A}. (3.5)

Afterincluding the primary constrainjg, x2, andysin the canonical Hamiltonian
density oZ with the help of Lagrange multipliens,, u,, andus, one can write

the total Hamiltonian density’7; as

I = [%(1‘[_)2 + I (-A7) —eA (3_0x) — A(of — 1) — AT A”

+ Thuy + psUz + (Tx — 0_ok + eA+)U3:|

(3.6)

the Hamiltons equations obtained from the total Hamiltoan= | <77 dx™ are

dy 0k = 2—;'1 = U3 (3.7a)
—0, Ik = % =[ed_ A~ — 2hoy + 9_Ug] (3.7b)
Oy = % = Uy (3.7¢)
—0,p = % = [~(o? — 1)] (3.7d)
LA = g% =Up (3.7¢e)
—0, 01" = 2% =[-?A" +ew)] (3.7)
AT = % =[0I~ +3_AT] (3.79)
—o0, It = % =[-0_T1" — ed_oyx — €?AT] (3.7h)
iUy = 881_'1:1 = (3.7i)
-3, Muy = % =1t (3.7)
doUp = oHr _ (3.7K)

daIlu, -
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dHT
9, Tluy = — 1 = 3.7l
4+ 11ug T Pa. ( )
IHT
04Uz = =0 3.7m
T2 9Tus (3.7m)
aH
—9,Tuz = aTT = [T — d_oy + eA']. (3.7n)
3

These are the equations of motion that preserve the constraints of the thegsy
and 3 in the course of time. For the equal light-cone-tinxe¢ & y*), Poisson
bracketf, },, of two functionsA and B, we choose the convention

o IA(X) 0B(y)  dA(X) IB(Y)
{AX), B(V)}p := / dz Xa:[aqa(z)apa(z)  ap.(2) aqa(Z)} 38)

demanding that primary constraipnt be preserved in the course of time, we obtain
the secondary constraint

xa = {x1, o )p =[0_T1" + e(d_ox) + EAT] ~ 0. (3.9)

Similarly, demanding the preservation gf in the course of time leads to the
secondary constraint:

X5 = {x2, 1) = [0 — 1] ~ 0. (3.10)

Now the preservation 0fs, x4, and xs for all time does not give rise to any
further constraints. The theory is thus seen to possess a set of five constraints
xii=1,...,5):

x=M"~0 (3.11a)
X2=pm~0 (3.11b)
x3 = [IIx — 0_ox + Al ~ 0 (3.11¢)
xa=[0_T1~ +e(0_oy) + AT ~ 0 (3.11d)
xs =[o¢ —1] ~0. (3.11e)

The matrix of the Poisson brackets of the constrajnisiamelyS,s(w=, z7) :=
{x«(W™), xg(z7)}p is then calculated. The nonvanishing matrix elements of the
matrix §,5(w~, z~) (with the arguments of the field variables being suppressed)
are

Sez3 = [—20_8(w~ —z7)] (3.12a)
S5 = —Sz=[-20kd(W™ —27)] (3.12b)
S =[—26?0_8(w~ — 27)]. (3.12¢)
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The inverse of the matri&,; does not exist and therefore the matrix is singular
implying that the set of constrainis is first-class and that the theory is a Gl theory
(Mitra and Rajaraman, 1990a,b). In fact, the action of theory is seen to be invariant
under the local vector gauge transformation (LVGT):

Sox =68, SAT=0_8, SAT =0.8, SA=—03,8 (3.13a)
8T = 8TIT = 8T~ = 8p, = 8TTug = 8TTup, = 8TTuz =0  (3.13b)
U = 04048, SUy=—0,0.,8, Suz=ed,p (3.13¢c)

whereg = B(x~, xT) is an arbitrary function of its arguments.
The generator of the above LVGT is the charge operator of the theory

It = f jrdx = /dX‘[eﬁ(a_ok) — @BAT + (3_B)(0, AT — 3_AT)]
(3.14)

and the current operator of the theory is

1= [17ac = [aclepo.og - @A~ (@pE. AT~ 0 A
(3.15)
The divergence of the vector—current density, nandelj (=9, j* +0_j ) is
therefore seen to vanish under the gauge constiaan®. This implies that the
theory possesses at the classical level, a local vector gauge symmetry under the
gauge) ~ 0 that is equivalent to the temporal or time-axial kind of a gauge for
the coordinate..
We now proceed to quantize the theory under the gauge
G =A =0 (3.16a)
&, =2 =0. (3.16b)

Under this gauge, the total set of constraints of the theory becomes

Y1=x1=M"=0 (3.17a)
Vo=x2=pm~0 (3.17b)
Y3 = x3 = [Tk — 3_ox + €A} ~ 0 (3.17¢)
Vo= xa=[0_T1" +e(d_ox) + A1 ~0 (3.17d)
Y5 = x5 = [0Z — 1] ~ 0 (3.17e)
Vo= =A =0 (3.17f)

V7= ,=r=0. (3.179)
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The matrix of the Poisson brackets of the constraifjtsnamely T,z(w, 2) :=
{Va(W), ¥5(2)}pisthen calculated. The nonvanishing matrix elements of the matrix
Teps(w, z) (with the arguments of the field variables being suppressed again) are

Tie=—Ter=—86(W~ —27) (3.18a)
Tor=—To=—-8(W —2) (3.18b)
Tez = —20_8(W~ —2Z7) (3.18c)
Tes = —Ts3 = —20kS(W™ — 2Z27) (3.18d)
Taa = —26%0_8(W™ —27). (3.18e)

The inverse of the matrik,s exists and the matrix is nonsingular. The nonvanishing
elements of the inverse of the matfi; (i.e., the elements of the matriX (1),s
(with the arguments of the field variables being suppressed once again) are

(T Hws=—-T Her=8w —2) (3.19a)
(T Nz =—T Ha=8w" —27) (3.19b)
(T Has = —(T Hsz = [%}S(W —-7) (3.19¢)
(T s = [;—;B ew —2) (3.19d)
(T Yss = [2_712]3_5(W_ -7) (3.19%)

with € (W~ — z™) being the step function, and
/dz‘T(x’, )T Nz, y) =L 8(x™ —y7). (3.20)
The Dirac bracket, }p of two functionsA andB is defined as (Dirac, 1950, 1964)
{A B)p := (A, B}y — / dw dz-

< Y [{A T W)lp[ AL (W, 2){Ts(2), B}y (3.21)
a,p

wherel'; are the constraints of the theory afvgh (w, z)[:= {T' (W), I's(2)}p] is the
matrix of the Poisson brackets of the constralitsThe transition to quantum the-

ory is made by the replacement of the Dirac brackets by the operator commutation
relations according to

(A, Blp — (—i)[A, B]; i=+—-1 (3.22)
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Finally, the nonvanishing equal light-cone time commutators of the theory under
the gauge (3.16) are obtained as

[A* (), ()] = 130~ y°) (3.232)
[A* 00, T = 519 50 —y) (3.230)
(A6, AT = | 5 [19-36 =) (3.230)
(100, T ()] = [%} e —y) (3.230)
[ (9, T(y)] = 5ies(c —y) (3.23¢)
[MTe(X), TTk(y)] = [_71} 0 5(x —y). (3.23f)

Also, for later use (in the next section), to consider the BRST formulation of
our Gl theory, we convert the total Hamiltonian density? into the first-order
Lagrangian density:

Lo = [T (34 A7) 4 T (31 AT) + TTk(d40k) + Pa(d42) + Mu1(d, )
+ TTuz(d4up) + Mug(94uz) — %] (3.24a)

Yo = |:1T(8+A+) — %(1‘1-)2 — T (0_A7) + e A (d_ok) + A(0? — 1)
+ @A A + (0_ox — e AN)(3,0k) + TTug(d4up) + Mua(d,Us)
+ HU3(8+U3)j|. (324b)

In the previous equation the termi&™ (0. A~ — uy), p.(04A — U) and I (94
ok — Ug) drop out in view of the Hamiltons equations of the theory.

4. THE BRST FORMULATION

We now rewrite our GNLSM, that is GI, as a quantum system that pos-
sesses the generalized gauge invariance called BRST symmetry. For this, we first
enlarge the Hilbert space of our gauge-invariant GNLSM and replace the no-
tion of gauge transformation, which shifts operatorschyumber functions, by
a BRST transformation, which mixes operators with Bose and Fermi statistics.
We then introduce new anticommuting variabteendc (Grassmann numbers on
the classical level, operators in the quantized theory) and a commuting variable
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b (called the Nakamishi—Lautrup field) such that (Becethal., 1974; Henneaux

and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshtaet al., 1993b, 1994a,b,c, 1995, 1999; Mitra and Rajaraman, 1990a,b;
Nemeschanskegt al,, 1988; Tyutin, 1975)

Sox=ec SAT=0d_c, SA  =0d.c, A= —d.C (4.1a)
STy =8N+t =8I =8p, =0; duy=09,9,C; dup=—a,0,c (4.1b)
8Tuy = 8Tuy us =0; Suz = ed,c (4.1c)
5c =0 —b;, b=0 (4.1d)

with the propertyy2 = 0. We now define a BRST-invariant function of the dynam-
ical variables to be a functioh(IT, pA,Al'I+ I1~, My,, My,, My, Po, e, g, ok,
A, AT, A7, ug, Uy, Us, b, ¢, C) such that f = 0.

4.1. Gauge Fixing in the BRST Formalism

Performing gauge-fixing in the BRST formalism implies adding to the first-
order Lagrangian density; a trivial BRST-invariant function (Becchét al,
1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshgaal, 1993b, 1994a,b,c, 1995, 1999; Mitra and
Rajaraman, 1990a,b; Nemeschanekgl., 1988; Tyutin, 1975). We thus write

i 1
ZLprsT = [H(3+A+) - E(H7)2 — M (0_A7)+eA (d_ok) + )»(akz -1)
+ @ATA™ + (3_ok — € AT)(940%) + Ty (94 U1) + Ty, (34 U2)

+ Ty, (8, us) + 5( (3+A + 10k+ b>>] (4.2)

The last term in the previous equation is the extra BRST-invariant gauge-fixing
term. After one integration by parts, this equation could now be written as

ZarsT = [1‘[‘(3+A+) — %(1‘1—)2 — I (3_A7) + eA (d_ox) + A(o¢ — 1)

+ @AY A + (0_ox — e A")(d,0k) + My, (84 u1) + I, (4 Up)

+ MMy, (04 uz) + b<3+A‘ + %ok> + %bz + (94.C) (9,€) — Ec} . (4.3)
Proceeding classically, the Euler—Lagrange equatiob feads

—b= <8+A‘ + é ok) (4.4)
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the requiremenib = 0 then implies
~ ~ 1.
—8b = (58+A‘ + s Sak) (4.5)
which in turn implies

This equation is also an Euler—Lagrange equation obtained by the variation of
Z grstWith respect t@. In introducing momenta, one has to be careful in defining
those for the fermionic variables. We thus define the bosonic momenta in the usual
manner so that
o0
(0L A7)
but for the fermionic momenta with directional derivatives we set

< —

= (9+0); Hazﬁfimy:(mc) (4.8)

ZersT=D 4.7)

0
Ie = iBRST8(8+C)

implying that the variable canonically conjugatedads (9,.c) and the variable
conjugate ta is (9..c). For writing the Hamiltonian density from the Lagrangian
density in the usual manner we remember that the former has to be Hermitian so
that

Hprst = [Tk(0+0k) + Pa(042) + TTF(0; A7) + 17 (94 AY) + My, (81 u1)
+ My, (84U2) + My (34U3) + Me(31€) + (040 g — Zprsy]  (4.99)

1 1
@7{/BRST = |:§(H_)2 + H_(B,A_) - eA_(afO'k) - e2A+A_ — EUKH+
1
= S(IT)° + p(3+2) + (M — 00k + e A")(3.04)

— M(0f — 1) + Mg+ Ec} (4.9b)

We can check the consistency of (4.8) and (4.9) by looking at Hamiltons equations
for the fermionic variables, that is,

N -

a

o -
3+C = 8—1_[(: h%BRST’ 8+C = D/FBRSTa—l_IE. (410)
Thus we see that
[ _ _ )
8+C = a—l_lc Q//KBRST = HE, 8+C = C///BRSTa—l_IE = Hc (411)
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isin agreement with (4.8). For the operatoys, d..c, andd, c, one needs to satisfy
the anticommutation relations 6f c with ¢ or of 8¢ with c, but not ofc, with c.
In generalc andc are independent canonical variables and one assumes that

{I, Mg} = {c,c} =0; a.{c,c}=0 (4.123)
{0+¢, ¢} = (=1){9.c, ¢} (4.12b)

where {,} means an anticommutator. We thus see that the anticommutators in
(4.12b) are nontrivial and need to be fixed. To fix these, we demand siadisfies

the Heisenberg equation (Becadti al., 1974; Henneaux and Teitelboim, 1992;
Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreslaia
1993b, 1994a,b,c, 1995, 1999; Mitra and Rajaraman, 1990a,b; Nemeschansky
et al, 1988; Tyutin, 1975):

[c, Hgrarl =104C (4.13)
and using the properiy? = ¢ = 0, one obtains
[c, A grsrl = {0+C, C}O,C. (4.14)
Equations (4.12)—(4.14) then imply
{9:¢, ¢} = (=1){d;c ¢} =i (4.15)

here the minus sign in this equation is nontrivial and implies the existence of
states with negative norm in the space of state vectors of the theory (Beg@thi
1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshgtal,, 1993b, 1994a,b,c, 1995, 1999; Mitra and
Rajaraman, 1990a,b; Nemeschanekgl, 1988; Tyutin, 1975).

4.2. The BRST Charge Operator

The BRST charge operat@ is the generator of the BRST transformations
(4.1). 1t is nilpotent and satisfie®? = 0. It mixes operators that satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators
with Bose operators and its anticommutators with Fermi operators for the present
theory satisfy

lov, Q] = d,c; [k, Q] = [2Cok 4 0_0..C] (4.16a)
A Ql=d,c  [AT,Q=-d.c [A,Ql=4d.c (4.16b)
[, Q] = [¢’c — ed, ] (4.16¢)
{C, Q) =[0_ok —eA" —II" — p, — INi] (4.16d)

{9:C, Q} = (-1)[0-TT" + ed_ox + AT + o — 1]. (4.16¢)
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All other commutators and anticommutators involviQganish. In view of (4.16),
the BRST charge operator of the present theory can be written as

Q= /dx*[ic[a_rr +ed_oy + AT + 07 — 1]

— (3 Q[T + p, + M — d_ox + eA"]]. (4.17)
This equation implies that the set of states satisfying the conditions
It |y) =0 (4.18a)
p.l¥)=0 (4.18Db)
[k — 0_ox +eAT]|y) =0 (4.18¢c)
[0_TT" + ed_ox +AT]|y) =0 (4.18d)
[07 —1]ly) =0 (4.18e)

belongs to the dynamically stable subspace of stgtéssatisfyingQ |¢) = 0,
that is, it belongs to the set of BRST-invariant states.

To understand the condition needed for recovering the physical states of the
theory, we rewrite the operatocsandc in terms of fermionic annihilation and
creation operators. For this purpose we consider (4.6). The solution of Eq. (4.6)
gives the Heisenberg operatdgt) (and correspondinglg(t)) as ¢ = x™):

ct)=€'B+e'D; ct)=e "B +€'Df (4.19)

which at timet = 0 imply
c=c(0)=B+D; c=c(0)=B"+Df (4.20a)
d.c = 93,¢c(0)=i(B — D); d,c=9,.c(0)= —i(Bf — D). (4.20b)

By imposing the conditions

c2=c?={c,c} ={d,C, 0.} =0 (4.21a)
{9,C, ¢} =i = —{d.c, T (4.21b)

we now obtain the equations
B2+ {B, D} + D?=B"2 4+ {B", D} + D2 =0 (4.22a)
{B,B"}+{D, D'} +{B,D}+{Bf,D} =0 (4.22b)
(B, BT} +{D, D’} — {B, D} — {Bf, D} =0 (4.22¢)
(B, B} — (D, D'} — {B, D'} + (D, Bf} = -1 (4.22d)

(B, B} —{D, D'} +{B, D'} — {D, Bf} = -1 (4.22¢)
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with the solution

B2=D?=B?2=D2=0 (4.23a)
(B,D} ={B",D}={B, D'} ={Bf, D'} =0 (4.23b)
(BT, B} = —%; (DT, D} = % (4.23c)
We now let|0) denote the fermionic vacuum for which
B|I0)=DI|0)=0 (4.24)
defining|0) to have norm one, (4.23c) implies
(0| BB' |0) = —%; (0 DDT |0) = +% (4.25)
so that
Bf10)£0; DT|0)#0. (4.26)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
A grst 1S however, irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

1 1
Hppst = |:§(l'[_)2 + T (0_A7) —eA (3_oy) — ATA — o1

1
= S(IT7)° + p(3:2) + (M — 00k + e A")(3.04)

—MoZ2-1)+2(B'B+ DT D)} (4.27)
and the BRST charge operatQris
Q= [dx‘[i B[(3_TT~ + ed_oy + €A™ + o7 — 1)
—i(IT* + p, + Mk — 8_ok + €A")| +iD[(0-TT" + ed_ox

+ €A + 07 — 1) +i(IT" + p, + Ik — d_ox + €A")]].  (4.28)

Now becaus& |) = 0, the set of states annihilated Rycontains not only the
set of states for which (4.18) hold but also additional states for which

Bly)=Dly)=0 (4.29a)
I+ |y) #0 (4.29b)
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Prl¥) #0 (4.29¢)
[Tk — d_ok + eAT] |y) # (4.29d)
[0_T1~ +ed_ox + AT |y) # (4.29)
[07 — 1] ly) # 0. (4.29f)

The Hamiltonian is also invariant under the anti-BRST transformation given by
Sop = —€C; SAT =—-9.C SA  =—3.C & =a,C (4.30a)
ST = S+ = 81 = Sp =0; du;=—0,9,C oUp=2a,0,C (4.30b)
8Ty, = 8My, = 8My, =0;  Suz= —ed,C (4.30c)
5c=0; dc=-b; 3b=0 (4.30d)

with the generator or anti-BRST charge
Q= /dx*[—ic—:[a,l'[’ +ed_o + AT + o7 — 1]
+ (3O + p; + MMy — d_ox + eAT]] (4.31a)
Q- /dx*[—i BI[(3_IT + ed_oy + €A + o2 — 1)

+i(IT" + p; + [y — d_0x + €A")] —iDT[(d_TT~ + ed_oyx
+ AT + 07— 1) —i(IT" + p, + [k — d_ox + €A")]]  (4.31b)

we also have

0+Q =[Q, Hgrs1] =0 (4.32a)

9:Q = [Q, Hers1l =0 (4.32b)
with

Hgrst = /dXCyKBRST (4320)

and we further impose the dual conditions that b@thnd@annihilate physical
states, implying that

Qly)=0 and Qly)=0. (4.33)

The states for which (4.18) hold satisfy both of these conditions and, in fact, are
the only states satisfying both of these conditions, since although with (4.23)

2(BfB+ D'D) = —2(BB' + DDY) (4.34)
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there are no states of this operator with|0) = 0 andD' |0) = 0 [cf. (4.26)], and
hence no free eigenstates of the fermionic patiggst which are annihilated by
each ofB, Bf, D, D. Thus the only states satisfying (4.33) are those satisfying
the constraints (3.11).

Further, the states for which (4.18) hold satisfy both the conditions (4.33)
and, in fact, are the only states satisfying both of these conditions because in view
of (4.21), one cannot have simultaneously, c andc, d, c, applied tgv) to give
zero. Thus the only states satisfying (4.33) are those that satisfy the constraints
of the theory (3.11) and they belong to the set of BRST-invariant and anti-BRST-
invariant states.

Alternatively, one can understand the previous point in terms of fermionic
annihilation and creation operators as follows. The condiory) = 0 implies
that the set of states annihilated Ky contains not only the states for which
(4.18) hold but also additional states for which (4.29) hold. HoweRdr,) = 0
guarantees that the set of states annihilate@ laspntains only the states for which
(4.18) hold, simply becausB' |) # 0 andD' |y) # 0. Thus in this alternative
way also, we see that the states satisfyipgy) = Q |y) = 0 (i.e., satisfying
(4.33)) are only those states that satisfy the constraints of the theory and also
that these states belong to the set of BRST invariant and anti-BRST-invariant
states.

5. SUMMARY AND DISCUSSIONS

In this paper we have studied a GNLSM in the LF frame, that is, on the
hyperplanesxt = (x° + x1)/+/2 = constant. The theory in the instant form
(Kulshreshtha, 2001) is also seen to be Gl possessing a set of five first-class
constraints where two constraints are primary and three are secondary. The LF
theory also possesses a set of five first-class constraints where three constraints
are primary and two are secondary. The theory remains Gl in both the cases as the
matrix of the Poisson brackets of the constraints of the theory in both the cases
(IF and LF) remains singular signifying that the sets of the (total number of) con-
straints in both the cases remains first-class. Also, in both the cases, there does not
exist any problem with respect to the operator ordering as one encounters it in the
case of usual (ungauged) NLSM.
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