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A gauged nonlinear sigma model in one-space one-time dimension is considered in the
light-front frame. The theory is seen to possess a local vector gauge symmetry. The
light-front Hamiltonian and BRST formulations of this theory are investigated under
some specific light-cone gauges.

1. INTRODUCTION

The O (N) nonlinear sigma models (NLSM) in one-space one-time ((1+ 1)−)
dimension (Callenet al., 1969; Candelaset al., 1985; Colemanet al., 1969;
Henneaux and Mezincescu, 1985; Kulshreshthaet al., 1993a; Maharana, 1983a,b;
Mitra and Rajaraman, 1990a,b; Ruehl, 1991a,b, 1993, 1995, 1996; Zamolodchikov
and Zamolodchikov, 1979), where the field sigma is a realN-component field,
provide a laboratory for the various nonperturbative techniques for example, 1/N-
expansion (Ruehl, 1991a,b, 1993, 1995, 1996), operator product expansion, and the
low energy theorems (Callenet al., 1969; Colemanet al., 1969). These models are
characterized by features like the renormalization and asymptotic freedom com-
mon to that of quantum chromodynamics, and they exhibit a nonperturbative par-
ticle spectrum, have no intrinsic scale parameter, possess the topological charges,
and are very crucial in the context of conformal (Ruehl, 1991a,b, 1993, 1995, 1996)
and string-field theories (Candelaset al., 1985; Henneaux and Mezincescu, 1985),
where they appear in the classical limit (Callenet al., 1969; Colemanet al., 1969).

The Hamiltonian formulation of the gauge-non-invariant (GNI), O (N)-NLSM
in (1+ 1)-dimension, has been studied in Maharana (1983a) and its two gauge-
invariant (GI) versions have been constructed in Kulshreshthaet al.(1993a), where
the Hamiltonian (Dirac, 1950, 1964) and Becchi–Rouet–Stora–Tyutini (BRST)
(Becchi et al., 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998;
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Kulshreshtha and Kulshreshtha, 1998; Kulshreshtaet al., 1993b, 1994a,b,c, 1995,
1999; Nemeschanskyet al., 1988; Tyutin, 1975) quantization of these GI models
has also been studied in detail (Kulshreshthaet al., 1993a). The NLSM studied
in Kulshreshthaet al. (1993a); Maharana (1983a,b); and Mitra and Rajaraman
(1990a,b) do not have any gauge fields in the theory. Corresponding to these
models (Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b); if we consider models involving the gauge field, as proposed in the
present paper, we obtain the so-called gauged-NLSM (GNLSM). In the present
paper, we propose to study such a GNLSM obtained by gauging the usual NLSM
(without involving the vector gauge fieldAµ(x, t)) (Kulshreshthaet al., 1993a;
Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b) and investigate its canon-
ical structure, constrained dynamics, and Hamiltonian (Dirac, 1950, 1964) and
BRST (Becchiet al., 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshtaet al., 1993b, 1994a,b,c, 1995,
1999; Nemeschanskyet al., 1988; Tyutin, 1975) formulations in the light-front
(LF) frame on the hyperplanesx+ = (x0+ x1)/

√
2= constant (Dirac, 1949).

The Hamiltonian and BRST formulations of this GNLSM in the usual instant
form (IF) of dynamics (on the hyperplanesx0 = constant) (Dirac, 1949) has been
investigated (Kulshreshtha, 2001).

The IF theory (Kulshreshtha, 2001) is seen to possess a set of five first-class
constraints (where two constraints are primary and three are secondary) implying
that the theory is a GI theory.

The LF theory under the present investigation is also seen to possess a set
of five first-class constraints, however—now having three primary constraints and
two secondary constraints—implying again that the theory under consideration is
a GI theory. The LF Hamiltonian formulation of this GNLSM is investigated in
the present paper under some specific light-cone (LC) gauges.

However, in the usual Hamiltonian formulation of a GI theory under some
gauge-fixing conditions, one necessarily destroys the gauge invariance of the the-
ory by fixing the gauge (which converts a set of first-class constraints into a set of
second-class constraints, implying a breaking of gauge invariance under the gauge
fixing). To achieve the quantization of a GI theory such that the gauge invariance
of the theory is maintained even under the gauge fixing, one goes to a more gen-
eralized procedure called the BRST formulation (Becchiet al., 1974; Henneaux
and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshthaet al., 1993a,b, 1994a,b,c, 1995, 1999; Nemeschanskyet al., 1988;
Tyutin, 1975). In the BRST formulation of a GI theory, the theory is rewrit-
ten as a quantum system that possesses a generalized gauge invariance called
the BRST symmetry. For this, one enlarges the Hilbert space of the GI theory
and replaces the notion of the gauge transformation, which shifts operators by
c-number functions by a BRST transformation that mixes the operators having
different statistics. In view of this, one introduces new anticommuting variablesc
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andc̄ called the Faddeev–Popov ghost and antighost fields, which are Grassmann
numbers on the classical level and operators in the quantized theory, and a commut-
ing variableb called the Nakanishi–Lautrup field (Becchiet al., 1974; Henneaux
and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshtaet al., 1993b, 1994a,b,c, 1995, 1999; Mitra and Rajaraman, 1990a,b;
Nemeschanskyet al., 1988; Tyutini, 1975).

In the BRST formulation of a theory one thus embeds a GI theory into a BRST-
invariant system, and the quantum Hamiltonian of the system (which includes the
gauge-fixing contribution) commutes with the BRST charge operatorQ as well
as with the anti-BRST charge operator̄Q. The new symmetry of the system (the
BRST symmetry) that replaces the gauge invariance is maintained (even under
gauge fixing) and hence projecting any state onto the sector of BRST and anti-
BRST invariant states yields a theory that is isomorphic to the original GI theory.
The unitarity and consistency of the BRST-invariant theory described by the gauge-
fixed quantum Lagrangian is guaranteed by the conservation and nilpotency of the
BRST chargeQ.

In the next section, we briefly recapitulate the basics of the usual O (N)-NLSM
(without gauge fields) (Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and
Rajaraman, 1990a,b) as well as that of the GNLSM in the instant form of dynamics
(Kulshreshtha, 2001). In Section 3, we study the Hamiltonian formulation of the
proposed GNLSM in the LF frame, and in Section 4, its BRST formulation under
some specific light-cone gauges. The summary and discussions are finally given
in Section 5.

2. A RECAPITULATION OF THE NONLINEAR SIGMA MODEL
(NLSM) IN THE INSTANT FORM (IF)

2.1. The Usual (Ungauged) Theory

The O (N)-nonlinear sigma model in one-space one-time dimension in the
usual IF (i.e., on the hyperplanesx0 = constant) is described by the action (Callen
et al., 1969; Candelaset al., 1985; Colemanet al., 1969; Henneaux and Mezincescu,
1985; Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b; Ruehl, 1991a,b, 1993, 1995, 1996; Zamolodchikov and Zamolodchikov,
1979)

S=
∫

L Ndx dt (2.1a)

L N =
[

1

2
∂µσk∂

µσk + λ
(
σ 2

k − 1
)]

; k = 1, 2,. . . , N (2.1b)

L N =
[

1

2

(
σ̊

2
k − σ ′ 2k

)+ λ(σ 2
k − 1

)]
; k = 1, 2,. . . , N (2.1c)
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here Eσ ≡ [σk(x, t); k = 1, 2,. . . , N] is a multiplet of N real scalar fields in
(1+ 1)-dimension andλ(x, t) is another scalar field. The overdots and primes
denote the time and space derivatives respectively. The fieldEσ (x, t) maps the
two-dimensional space-time into theN-dimensional internal manifold whose co-
ordinates areσk(x, t). This model is seen to possess a set of four second-class
constraints (Kulshreshthaet al., 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b):

ρ1 = pλ ≈ 0 (2.2a)

ρ2 =
[
σ 2

k − 1
] ≈ 0 (2.2b)

ρ3 = 2σk 5k ≈ 0 (2.2c)

ρ4 =
(
252

k + 4λ σ 2
k + 2σk σ

′′
k

) ≈ 0 (2.2d)

whereρ1 is a primary constraint andρ2, ρ3, andρ4 are secondary constraints.
Here5k and pλ are the momenta canonically conjugate respectively toσk and
λ. The nonvanishing equal-time Dirac brackets (DBs) of the theory are given by
Kulshreshthaet al. (1993a) and Maharana (1983a)

{5`(x),5m (y)}D = −1

σ 2
k

[σ`(x)5m(y)−5`(x)σm(y)] δ(x − y) (2.3a)

{σ`(x),5m(y)}D =
[
δ`m − σ`(x)σm(y)

σ 2
k

]
δ(x − y). (2.3b)

For achieving the canonical quantization of the theory, one encounters the problem
of operator ordering while going from DBs to the commutation relations. This
problem could, however, be resolved as explained in Kulshreshthaet al. (1993a)
and Maharana (1983a,b) by demanding that all the fields and field momenta after
quantization become Hermitian operators and that all the canonical commutation
relations be consistent with the hermiticity of these operators (Kulshreshthaet al.,
1993; Maharana, 1983a,b).

2.2. The Gauged Nonlinear Sigma Model (GNLSM)

In one of our earlier papers (Kulshreshtha, 2001), we have studied the GNLSM
in the instant form (IF) of dynamics on the hyperplanesx0 = constant. This
IF-GNLSM is described by the action in (1+ 1)-dimension (Kulshreshtha,
2001).

S =
∫

L dx dt (2.4a)
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L :=
[

1

2
∂µσk∂

µσk + λ
(
σ 2

k − 1
)− 1

4
FµνFµν − eAµ∂

µσk

+ 1

2
e2AµAµ

]
(2.4b)

L :=
[

1

2

(
σ̊

2
k − σ ′2k

)+ λ(σ 2
k − 1

)+ 1

2
(Å1− A′0)2− e(A0σ̊ k − A1σ

′
k)

+ 1

2
e2
(
A2

0− A2
1

)]
(2.4c)

Fµν = (∂µAν − ∂νAµ); gµν := diag(+1,−1). (2.4d)

In the previous equation, the first term corresponds to a massless boson (which is
equivalent to a massless fermion), the second term is the usual term involving the
nonlinear constraint (σ 2

k − 1≈ 0) and the auxiliary fieldλ, the third term is the
kinetic energy term of the electromagnetic vector-gauge fieldAµ(x, t), the fourth
term represents the coupling of the sigma field to the electromagnetic field, and
the last term is the mass term for the vector gauge bosonAµ(x, t) and contains the
signature of regularization.

This theory is seen to possess a set of five constraints (Kulshreshtha,
2001):

Ä1 = 50 ≈ 0 (2.5a)

Ä2 = pλ ≈ 0 (2.5b)

Ä3 = [E′ − e5k] ≈ 0 (2.5c)

Ä4 =
[
σ 2

k − 1
] ≈ 0 (2.5d)

Ä5 = [2σk5k + 2e A0 σk] ≈ 0 (2.5e)

where the first two constraintsÄ1 andÄ2 are primary constraints and the last three
Ä3,Ä4, andÄ5 are secondary. Also,5k, pλ,50, andEare the momenta canonically
conjugate respectively toσk, λ, A0, and A1. The matrix of the Poisson brackets
of the constraintsÄi namelyMαβ (z, z′) := {Äα(z),Äβ(z′)}p is then calculated.
The inverse of the matrixMαβ does not exist and therefore the matrix is singular
implying that the set of constraintsÄi is first-class and that the theory described
by L is a GI theory (Mitra and Rajaraman, 1990a,b). In fact, the action of theory
is seen to be invariant under the local vector gauge transformation (LVGT):

δσk = eβ(x, t), δA1 = β ′(x, t), δA0 = β̊(x, t) (2.6a)

δλ = −β̊(x, t), δ5k = δE = δ50 = δpλ = 0 (2.6b)
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δu = ∂0∂0β(x, t), δv = −∂0∂0β(x, t) (2.6c)

δ5u = 0, δ5v = 0 (2.6d)

whereβ ≡ β(x, t) is an arbitrary function of its arguments. The generator of the
LVGT is the charge operator of the theory

J0 =
∫

j 0dx=
∫

dx[eβ(σ̊k − eA0)+ β ′(Å1− A′0)] (2.7)

and the current operator of the theory is

J1 =
∫

j 1dx=
∫

dx[eβ(−σ ′k + eA1)− β̊(Å1− A′0)]. (2.8)

The divergence of the vector–current density, namely∂µ j µ is therefore seen to
vanish under the gauge constraintλk ≈ 0. This implies that the theory possesses
at the classical level, a local vector gauge symmetry (LVGS) under the gauge
constraintλ ≈ 0, which is, in fact, equivalent to the temporal or time-axial kind of
a gauge for the coordinateλ.

The nonvanishing equal-time commutators of the theory, for example, under
the gaugeG = λ = 0 are obtained as (Kulshreshtha, 2001):

[ A0(x),50(y)] = i

[−1

e2

]
δ(x − y) (2.9a)

[ A1(x),5k(y)] =
[−i

e

]
δ′(x − y) (2.9b)

[ A1(x), E(y)] = i δ(x − y) (2.9c)

[ A0(x), A1(y)] =
[

i

e2

]
δ′(x − y) (2.9d)

[50(x),5k(y)] = i

[−1

e

]
δ(x − y) (2.9e)

3. THE GNLSM IN THE LF FRAME

To study the theory in the LF frame, that is on the hyperplanesx+ = (x0+
x1)/
√

2= constant, one defines the coordinatesx± := [(x0± x1)/
√

2], and then
writes all the quantities involved in the action in terms ofx± instead ofx0 andx1

(Dirac, 1949). The action of the theory in the LF frame thus reads

S=
∫

L dx+ dx− (3.1a)



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP190-341461 August 21, 2001 17:42 Style file version Nov. 19th, 1999

Gauged Nonlinear Sigma Model in Light-Front Frame 1567

L =
[
(∂+σk)(∂−σk)+ λ(σ 2

k − 1
)+ 1

2
(∂+A+ − ∂−A−)2

− e[ A−(∂−σk)+ A+(∂+σk)] + e2A+A−
]

(3.1b)

A∓ = A± = (A0± A1)/
√

2; ∂±σk = (σ̊k ± σ ′k)/
√

2. (3.1c)

As shown previously, in (3.1b), the first term corresponds to a massless boson
(which is equivalent to a massless fermion), the second term is the usual term
involving the nonlinear constraint [(σ 2

k − 1)≈ 0] and the auxiliary fieldλ, the third
term is the kinetic energy term of the electromagnetic vector-gauge fieldAµ(x, t),
the fourth term represents the coupling of the sigma field to the electromagnetic
field, and the last term is the mass term for the vector gauge bosonAµ.

The Euler–Lagrange equations obtained fromL (3.1) are

[2∂+∂− σk] = [e(∂+A+ + ∂−A−)+ 2λ σk] (3.2a)

[∂+(∂+A+ − ∂−A−)] = [e2A− − e(∂+σk)] (3.2b)

[∂−(∂+A+ − ∂−A−)] = [e(∂−σk)− e2A+] (3.2c)[
σ 2

k − 1
] = 0. (3.2d)

3.1. The Hamiltonian Formulation

The light-cone canonical momenta for the above LC–GNLSM obtained from
L are

5k := ∂L

∂(∂+σk)
= [∂−σk − eA+] (3.3a)

pλ := ∂L

∂(∂+λ)
= 0 (3.3b)

5+ := ∂L

∂(∂+A−)
= 0 (3.3c)

5− := ∂L

∂(∂+A+)
= [∂+A+ − ∂−A−] (3.3d)

here,5+,5−,5k, and pλ are the momenta canonically conjugate respectively
to A−, A+, σk, andλ. Also these equations imply that the theory possesses three
primary constraints:

χ1 = 5+ ≈ 0 (3.4a)

χ2 = pλ ≈ 0 (3.4b)

χ3 = [5k − ∂−σk + eA+] ≈ 0. (3.4c)
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The canonical Hamiltonian density corresponding toL is

H C = [5k(∂+σk)+5+(∂+A−)+5−(∂+A+)+ pλ(∂+λ)− L ]

=
[

1

2
(5−)2+5−(∂−A−)− eA−(∂−σk)− λ(σ 2

k − 1
)− e2A+A−

]
. (3.5)

After including the primary constraintsχ1, χ2, andχ3 in the canonical Hamiltonian
densityHC with the help of Lagrange multipliersu1, u2, andu3, one can write
the total Hamiltonian densityH T as

H T =
[

1

2
(5−)2+5−(∂−A−)− eA−(∂−σk)− λ(σ 2

k − 1
)− e2A+A−

+ 5+u1+ pλu2+ (5k − ∂−σk + eA+)u3

]
(3.6)

the Hamiltons equations obtained from the total HamiltonianHT =
∫

H T dx− are

∂+σk = ∂HT

∂5k
= u3 (3.7a)

−∂+5k = ∂HT

∂σk
= [e∂−A− − 2λσk + ∂−u3] (3.7b)

∂+λ = ∂HT

∂pλ
= u2 (3.7c)

−∂+pλ = ∂HT

∂λ
= [−(σ 2

k − 1
)]

(3.7d)

∂+A− = ∂HT

∂5+
= u1 (3.7e)

−∂+5− = ∂HT

∂A+
= [−e2A− + eu3] (3.7f)

∂+A+ = ∂HT

∂5−
= [5− + ∂−A−] (3.7g)

−∂+5+ = ∂HT

∂A−
= [−∂−5− − e∂−σk − e2A+] (3.7h)

∂+u1 = ∂HT

∂5u1
= 0 (3.7i)

−∂+5u1 = ∂HT

∂u1
= 5+ (3.7j)

∂+u2 = ∂HT

∂5u2
= 0 (3.7k)
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−∂+5u2 = ∂HT

∂u2
= pλ (3.7l)

∂+u3 = ∂HT

∂5u3
= 0 (3.7m)

−∂+5u3 = ∂HT

∂u3
= [5k − ∂−σk + eA+]. (3.7n)

These are the equations of motion that preserve the constraints of the theoryχ1, χ2,
andχ3 in the course of time. For the equal light-cone-time (x+ = y+), Poisson
bracket{,}p of two functionsA andB, we choose the convention

{A(x), B(y)}p :=
∫

dz−
∑
α

[
∂A(x)

∂qα(z)

∂B(y)

∂pα(z)
− ∂A(x)

∂pα(z)

∂B(y)

∂qα(z)

]
(3.8)

demanding that primary constraintχ1 be preserved in the course of time, we obtain
the secondary constraint

χ4 := {χ1, H T}p = [∂−5− + e(∂−σk)+ e2A+] ≈ 0. (3.9)

Similarly, demanding the preservation ofχ2 in the course of time leads to the
secondary constraint:

χ5 := {χ2, H T}p =
[
σ 2

k − 1
] ≈ 0. (3.10)

Now the preservation ofχ3, χ4, andχ5 for all time does not give rise to any
further constraints. The theory is thus seen to possess a set of five constraints
χi (i = 1, . . . , 5):

χ1 = 5+ ≈ 0 (3.11a)

χ2 = pλ ≈ 0 (3.11b)

χ3 = [5k − ∂−σk + eA+] ≈ 0 (3.11c)

χ4 = [∂−5− + e(∂−σk)+ e2A+] ≈ 0 (3.11d)

χ5 =
[
σ 2

k − 1
] ≈ 0. (3.11e)

The matrix of the Poisson brackets of the constraintsχi , namelySαβ(w−, z−) :=
{χα(w−), χβ(z−)}p is then calculated. The nonvanishing matrix elements of the
matrix Sαβ(w−, z−) (with the arguments of the field variables being suppressed)
are

S33 = [−2∂−δ(w− − z−)] (3.12a)

S35 = −S53 = [−2σk δ(w
− − z−)] (3.12b)

S44 = [−2e2∂−δ(w− − z−)]. (3.12c)
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The inverse of the matrixSαβ does not exist and therefore the matrix is singular
implying that the set of constraintsχi is first-class and that the theory is a GI theory
(Mitra and Rajaraman, 1990a,b). In fact, the action of theory is seen to be invariant
under the local vector gauge transformation (LVGT):

δσk = eβ, δA+ = ∂−β, δA− = ∂+β, δλ = −∂+β (3.13a)

δ5k = δ5+ = δ5− = δpλ = δ5u1 = δ5u2 = δ5u3 = 0 (3.13b)

δu1 = ∂+∂+β, δu2 = −∂+∂+β, δu3 = e∂+β (3.13c)

whereβ ≡ β(x−, x+) is an arbitrary function of its arguments.
The generator of the above LVGT is the charge operator of the theory

J+ =
∫

j+dx− =
∫

dx−[eβ(∂−σk)− e2βA+ + (∂−β)(∂+A+ − ∂−A−)]

(3.14)

and the current operator of the theory is

J− =
∫

j−dx− =
∫

dx−[eβ(∂+σk)− e2βA− − (∂+β)(∂+A+ − ∂−A−)].

(3.15)

The divergence of the vector–current density, namely∂µ j µ(=∂+ j+ + ∂− j−) is
therefore seen to vanish under the gauge constraintλ ≈ 0. This implies that the
theory possesses at the classical level, a local vector gauge symmetry under the
gaugeλ ≈ 0 that is equivalent to the temporal or time-axial kind of a gauge for
the coordinateλ.

We now proceed to quantize the theory under the gauge

G 1 = A− = 0 (3.16a)

G 2 = λ = 0. (3.16b)

Under this gauge, the total set of constraints of the theory becomes

ψ1 = χ1 = 5+ ≈ 0 (3.17a)

ψ2 = χ2 = pλ ≈ 0 (3.17b)

ψ3 = χ3 = [5k − ∂−σk + eA+] ≈ 0 (3.17c)

ψ4 = χ4 = [∂−5− + e(∂−σk)+ e2A+] ≈ 0 (3.17d)

ψ5 = χ5 =
[
σ 2

k − 1
] ≈ 0 (3.17e)

ψ6 = G 1 = A− = 0 (3.17f)

ψ7 = G 2 = λ = 0. (3.17g)
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The matrix of the Poisson brackets of the constraintsψi , namelyTαβ(w, z) :=
{ψα(w), ψβ(z)}p is then calculated. The nonvanishing matrix elements of the matrix
Tαβ(w, z) (with the arguments of the field variables being suppressed again) are

T16 = −T61 = −δ(w− − z−) (3.18a)

T27 = −T72 = −δ(w− − z−) (3.18b)

T33 = −2∂−δ(w− − z−) (3.18c)

T35 = −T53 = −2σkδ(w
− − z−) (3.18d)

T44 = −2e2∂−δ(w− − z−). (3.18e)

The inverse of the matrixTαβ exists and the matrix is nonsingular. The nonvanishing
elements of the inverse of the matrixTαβ (i.e., the elements of the matrix (T−1)αβ
(with the arguments of the field variables being suppressed once again) are

(T−1)16 = −(T−1)61 = δ(w− − z−) (3.19a)

(T−1)27 = −(T−1)72 = δ(w− − z−) (3.19b)

(T−1)35 = −(T−1)53 =
[

1

2σk

]
δ(w− − z−) (3.19c)

(T−1)44 =
[−1

2e2

]
1

2
∈ (w− − z−) (3.19d)

(T−1)55 =
[ −1

2σ 2
k

]
∂−δ(w− − z−) (3.19e)

with ∈ (w− − z−) being the step function, and∫
dz−T(x−, z−)T−1(z−, y−) = 17x7 δ(x

− − y−). (3.20)

The Dirac bracket{,}D of two functionsA andB is defined as (Dirac, 1950, 1964)

{A, B}D := {A, B}p−
∫ ∫

dw−dz−

×
∑
α,β

[{A, 0α (w)}p
[
1−1
αβ (w, z)

]{0β(z), B}p
]

(3.21)

where0i are the constraints of the theory and1αβ(w, z)[:= {0α(w), 0β(z)}p] is the
matrix of the Poisson brackets of the constraints0i . The transition to quantum the-
ory is made by the replacement of the Dirac brackets by the operator commutation
relations according to

{A, B}D → (−i )[ A, B]; i = √−1. (3.22)



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP190-341461 August 21, 2001 17:42 Style file version Nov. 19th, 1999

1572 Kulshreshtha

Finally, the nonvanishing equal light-cone time commutators of the theory under
the gauge (3.16) are obtained as

[ A+(x),5−(y)] = 3

2
i δ(x− − y−) (3.23a)

[ A+(x),5k(y)] = 1

2
i ∂−δ(x− − y−) (3.23b)

[ A+(x), A+(y)] =
[−1

2e2

]
i ∂−δ(x− − y−) (3.23c)

[5−(x),5−(y)] =
[−e2

4

]
i ∈ (x− − y−) (3.23d)

[5−(x),5k(y)] = 1

2
ieδ(x− − y−) (3.23e)

[5k(x),5k(y)] =
[−1

2

]
i ∂−δ(x− − y−). (3.23f)

Also, for later use (in the next section), to consider the BRST formulation of
our GI theory, we convert the total Hamiltonian densityH T into the first-order
Lagrangian density:

L IO := [5+(∂+A−)+5−(∂+A+)+5k(∂+σk)+ pλ(∂+λ)+5u1(∂+u1)

+ 5u2(∂+u2)+5u3(∂+u3)−H T] (3.24a)

L IO :=
[
5−(∂+A+)− 1

2
(5−)2−5−(∂−A−)+ eA−(∂−σk)+ λ(σ 2

k − 1
)

+ e2A+A− + (∂−σk − eA+)(∂+σk)+5u1(∂+u1)+5u2(∂+u2)

+ 5u3(∂+u3)

]
. (3.24b)

In the previous equation the terms5+(∂+A− − u1), pλ(∂+λ− u2) and5k(∂+
σk − u3) drop out in view of the Hamiltons equations of the theory.

4. THE BRST FORMULATION

We now rewrite our GNLSM, that is GI, as a quantum system that pos-
sesses the generalized gauge invariance called BRST symmetry. For this, we first
enlarge the Hilbert space of our gauge-invariant GNLSM and replace the no-
tion of gauge transformation, which shifts operators byc-number functions, by
a BRST transformation, which mixes operators with Bose and Fermi statistics.
We then introduce new anticommuting variablesc andc̄ (Grassmann numbers on
the classical level, operators in the quantized theory) and a commuting variable
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b (called the Nakamishi–Lautrup field) such that (Becchiet al., 1974; Henneaux
and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshtaet al., 1993b, 1994a,b,c, 1995, 1999; Mitra and Rajaraman, 1990a,b;
Nemeschanskyet al., 1988; Tyutin, 1975)

δ̂σk = ec; δ̂A+ = ∂−c; δ̂A− = ∂+c; δ̂λ = −∂+c (4.1a)

δ̂5k = δ̂5+ = δ̂5− = δ̂pλ = 0; δ̂u1 = ∂+∂+c; δ̂u2 = −∂+∂+c (4.1b)

δ̂5u1 = δ̂5u2 = δ̂5u3 = 0; δ̂u3 = e∂+c (4.1c)

δ̂c = 0; δ̂c̄ = b; δ̂b = 0 (4.1d)

with the propertŷδ2 = 0. We now define a BRST-invariant function of the dynam-
ical variables to be a functionf (5k, pλ,5+,5−,5u1,5u2,5u3, pb,5c,5c̄, σk,
λ, A+, A−, u1, u2, u3, b, c, c̄) such that̂δ f = 0.

4.1. Gauge Fixing in the BRST Formalism

Performing gauge-fixing in the BRST formalism implies adding to the first-
order Lagrangian densityLIO a trivial BRST-invariant function (Becchiet al.,
1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshtaet al., 1993b, 1994a,b,c, 1995, 1999; Mitra and
Rajaraman, 1990a,b; Nemeschanskyet al., 1988; Tyutin, 1975). We thus write

L BRST=
[
5−(∂+A+)− 1

2
(5−)2−5−(∂−A−)+ eA−(∂−σk)+ λ(σ 2

k − 1
)

+ e2A+A− + (∂−σk − eA+)(∂+σk)+5u1(∂+u1)+5u2(∂+u2)

+ 5u3(∂+u3)+ δ̂
(

c̄

(
∂+A− + 1

e
σk + 1

2
b

))]
. (4.2)

The last term in the previous equation is the extra BRST-invariant gauge-fixing
term. After one integration by parts, this equation could now be written as

L BRST=
[
5−(∂+A+)− 1

2
(5−)2−5−(∂−A−)+ eA−(∂−σk)+ λ(σ 2

k − 1
)

+ e2A+A− + (∂−σk − eA+)(∂+σk)+5u1(∂+u1)+5u2(∂+u2)

+ 5u3(∂+u3)+ b

(
∂+A− + 1

e
σk

)
+ 1

2
b2+ (∂+c̄) (∂+c)− c̄c

]
. (4.3)

Proceeding classically, the Euler–Lagrange equation forb reads

−b =
(
∂+A− + 1

e
σk

)
(4.4)



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP190-341461 August 21, 2001 17:42 Style file version Nov. 19th, 1999

1574 Kulshreshtha

the requirement̂δb = 0 then implies

−δ̂b =
(
δ̂∂+A− + 1

e
δ̂σk

)
(4.5)

which in turn implies

−∂+ ∂+ c = c. (4.6)

This equation is also an Euler–Lagrange equation obtained by the variation of
L BRST with respect tōc. In introducing momenta, one has to be careful in defining
those for the fermionic variables. We thus define the bosonic momenta in the usual
manner so that

5+ := ∂

∂(∂+A−)
L BRST= b (4.7)

but for the fermionic momenta with directional derivatives we set

5c = L BRST

∂
←

∂(∂+c)
= (∂+c̄); 5c̄ = ∂

→

∂(∂+c̄)
L BRST= (∂+c) (4.8)

implying that the variable canonically conjugate toc is (∂+c̄) and the variable
conjugate tōc is (∂+c). For writing the Hamiltonian density from the Lagrangian
density in the usual manner we remember that the former has to be Hermitian so
that

H BRST= [5k(∂+σk)+ pλ(∂+λ)+5+(∂+A−)+5−(∂+A+)+5u1(∂+u1)

+ 5u2(∂+u2)+5u3(∂+u3)+5c(∂+c)+ (∂+c̄)5c̄ − L BRST] (4.9a)

H BRST=
[

1

2
(5−)2+5−(∂−A−)− eA−(∂−σk)− e2A+A− − 1

e
σk5

+

− 1

2
(5+)2+ pλ(∂+λ)+ (5k − ∂−σk + eA+)(∂+σk)

− λ(σ 2
k − 1

)+5c5c̄ + c̄c

]
(4.9b)

We can check the consistency of (4.8) and (4.9) by looking at Hamiltons equations
for the fermionic variables, that is,

∂+c = ∂
→

∂5c
H BRST, ∂+c̄ =H BRST

∂
←

∂5c̄
. (4.10)

Thus we see that

∂+c = c→

∂5c
H BRST= 5c̄; ∂+c̄ =H BRST

∂
←

∂5c̄
= 5c (4.11)
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is in agreement with (4.8). For the operatorsc, c̄, ∂+c, and∂+c̄, one needs to satisfy
the anticommutation relations of∂+c with c̄ or of ∂+c̄ with c, but not ofc, with c̄.
In general,c andc̄ are independent canonical variables and one assumes that

{5c,5c̄} = {c̄, c} = 0; ∂+{c̄, c} = 0 (4.12a)

{∂+c̄, c} = (−1){∂+c, c̄} (4.12b)

where {,} means an anticommutator. We thus see that the anticommutators in
(4.12b) are nontrivial and need to be fixed. To fix these, we demand thatc satisfies
the Heisenberg equation (Becchiet al., 1974; Henneaux and Teitelboim, 1992;
Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshtaet al.,
1993b, 1994a,b,c, 1995, 1999; Mitra and Rajaraman, 1990a,b; Nemeschansky
et al., 1988; Tyutin, 1975):

[c, H BRST] = i ∂+c (4.13)

and using the propertyc2 = c̄2 = 0, one obtains

[c, H BRST] = {∂+c̄, c}∂+c. (4.14)

Equations (4.12)–(4.14) then imply

{∂+c̄, c} = (−1){∂+c, c̄} = i (4.15)

here the minus sign in this equation is nontrivial and implies the existence of
states with negative norm in the space of state vectors of the theory (Becchiet al.,
1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshtaet al., 1993b, 1994a,b,c, 1995, 1999; Mitra and
Rajaraman, 1990a,b; Nemeschanskyet al., 1988; Tyutin, 1975).

4.2. The BRST Charge Operator

The BRST charge operatorQ is the generator of the BRST transformations
(4.1). It is nilpotent and satisfiesQ2 = 0. It mixes operators that satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators
with Bose operators and its anticommutators with Fermi operators for the present
theory satisfy

[σk, Q] = ∂+c; [5k, Q] = [2cσk + ∂−∂+c] (4.16a)

[λ, Q] = ∂+c; [ A+, Q] = −∂−c; [ A−, Q] = ∂+c (4.16b)

[5−, Q] = [e2c− e∂+c] (4.16c)

{c̄, Q} = [∂−σk − eA+ −5+ − pλ −5k] (4.16d)

{∂+c̄, Q} = (−1)
[
∂−5− + e∂−σk + e2A+ + σ 2

k − 1
]
. (4.16e)
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All other commutators and anticommutators involvingQ vanish. In view of (4.16),
the BRST charge operator of the present theory can be written as

Q =
∫

dx−
[
ic
[
∂−5− + e∂−σk + e2A+ + σ 2

k − 1
]

− i (∂+c)[5+ + pλ +5k − ∂−σk + eA+]
]
. (4.17)

This equation implies that the set of states satisfying the conditions

5+ |ψ〉 = 0 (4.18a)

pλ |ψ〉 = 0 (4.18b)

[5k − ∂−σk + eA+] |ψ〉 = 0 (4.18c)

[∂−5− + e∂−σk + e2A+] |ψ〉 = 0 (4.18d)[
σ 2

k − 1
] |ψ〉 = 0 (4.18e)

belongs to the dynamically stable subspace of states|ψ〉 satisfyingQ |ψ〉 = 0,
that is, it belongs to the set of BRST-invariant states.

To understand the condition needed for recovering the physical states of the
theory, we rewrite the operatorsc and c̄ in terms of fermionic annihilation and
creation operators. For this purpose we consider (4.6). The solution of Eq. (4.6)
gives the Heisenberg operatorc(t) (and correspondinglȳc(t)) as (t ≡ x+):

c(t) = eit B+ e−i t D; c̄(t) = e−i t B† + eit D† (4.19)

which at timet = 0 imply

c ≡ c(0)= B+ D; c̄ ≡ c̄(0)= B† + D† (4.20a)

∂+c ≡ ∂+c(0)= i (B− D); ∂+c̄ ≡ ∂+c̄(0)= −i (B† − D†). (4.20b)

By imposing the conditions

c2 = c̄2 = {c̄, c} = {∂+c̄, ∂+c} = 0 (4.21a)

{∂+c̄, c} = i = −{∂+c, c̄} (4.21b)

we now obtain the equations

B2+ {B, D} + D2 = B†2+ {B†, D†} + D†2 = 0 (4.22a)

{B, B†} + {D, D†} + {B, D†} + {B†, D} = 0 (4.22b)

{B, B†} + {D, D†} − {B, D†} − {B†, D} = 0 (4.22c)

{B, B†} − {D, D†} − {B, D†} + {D, B†} = −1 (4.22d)

{B, B†} − {D, D†} + {B, D†} − {D, B†} = −1 (4.22e)
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with the solution

B2 = D2 = B†2 = D†2 = 0 (4.23a)

{B, D} = {B†, D} = {B, D†} = {B†, D†} = 0 (4.23b)

{B†, B} = −1

2
; {D†, D} = 1

2
. (4.23c)

We now let|0〉 denote the fermionic vacuum for which

B |0〉 = D |0〉 = 0 (4.24)

defining|0〉 to have norm one, (4.23c) implies

〈0| B B† |0〉 = −1

2
; 〈0| DD† |0〉 = +1

2
(4.25)

so that

B† |0〉 6= 0; D† |0〉 6= 0. (4.26)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
H BRST is however, irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

H BRST=
[

1

2
(5−)2+5−(∂−A−)− eA−(∂−σk)− e2A+A− − 1

e
σk5

+

− 1

2
(5+)2+ pλ(∂+λ)+ (5k − ∂−σk + eA+)(∂+σk)

− λ(σ 2
k − 1

)+ 2(B†B+ D†D)

]
(4.27)

and the BRST charge operatorQ is

Q =
∫

dx−
[
i B
[(
∂−5− + e∂−σk + e2A+ + σ 2

k − 1
)

− i (5+ + pλ +5k − ∂−σk + eA+)
]+ i D

[(
∂−5− + e∂−σk

+ e2A+ + σ 2
k − 1

)+ i (5+ + pλ +5k − ∂−σk + eA+)
]]
. (4.28)

Now becauseQ |ψ〉 = 0, the set of states annihilated byQ contains not only the
set of states for which (4.18) hold but also additional states for which

B |ψ〉 = D |ψ〉 = 0 (4.29a)

5+|ψ〉 6= 0 (4.29b)
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pλ |ψ〉 6= 0 (4.29c)

[5k − ∂−σk + eA+] |ψ〉 6= 0 (4.29d)

[∂−5− + e∂−σk + e2A+] |ψ〉 6= 0 (4.29e)[
σ 2

k − 1
] |ψ〉 6= 0. (4.29f)

The Hamiltonian is also invariant under the anti-BRST transformation given by

δ̂σk = −ec̄; δ̂A+ = −∂−c̄; δ̂A− = −∂+c̄; δ̂λ = ∂+c̄ (4.30a)

δ̂5k = δ̂5+ = δ̂5− = δ̂pλ = 0; δ̂u1 = −∂+∂+c̄; δ̂u2 = ∂+∂+c̄ (4.30b)

δ̂5u1 = δ̂5u2 = δ̂5u3 = 0; δ̂u3 = −e∂+c̄ (4.30c)

δ̂c̄ = 0; δ̂c = −b; δ̂b = 0 (4.30d)

with the generator or anti-BRST charge

Q̄ =
∫

dx−
[−i c̄

[
∂−5− + e∂−σk + e2A+ + σ 2

k − 1
]

+ i (∂+c̄)[5+ + pλ +5k − ∂−σk + eA+]
]

(4.31a)

Q̄ =
∫

dx−
[−i B†

[(
∂−5− + e∂−σk + e2A+ + σ 2

k − 1
)

+ i (5+ + pλ +5k − ∂−σk + eA+)
]− i D†

[(
∂−5− + e∂−σk

+ e2A+ + σ 2
k − 1

)− i (5+ + pλ +5k − ∂−σk + eA+)
]]

(4.31b)

we also have

∂+Q = [Q, HBRST] = 0 (4.32a)

∂+ Q̄ = [ Q̄, HBRST] = 0 (4.32b)

with

HBRST=
∫

dxH BRST (4.32c)

and we further impose the dual conditions that bothQ andQ̄ annihilate physical
states, implying that

Q |ψ〉 = 0 and Q̄ |ψ〉 = 0. (4.33)

The states for which (4.18) hold satisfy both of these conditions and, in fact, are
the only states satisfying both of these conditions, since although with (4.23)

2(B†B+ D†D) = −2(B B† + DD†) (4.34)
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there are no states of this operator withB† |0〉 = 0 andD† |0〉 = 0 [cf. (4.26)], and
hence no free eigenstates of the fermionic part ofHBRST which are annihilated by
each ofB, B†, D, D†. Thus the only states satisfying (4.33) are those satisfying
the constraints (3.11).

Further, the states for which (4.18) hold satisfy both the conditions (4.33)
and, in fact, are the only states satisfying both of these conditions because in view
of (4.21), one cannot have simultaneouslyc, ∂+c andc̄, ∂+c̄, applied to|ψ〉 to give
zero. Thus the only states satisfying (4.33) are those that satisfy the constraints
of the theory (3.11) and they belong to the set of BRST-invariant and anti-BRST-
invariant states.

Alternatively, one can understand the previous point in terms of fermionic
annihilation and creation operators as follows. The conditionQ |ψ〉 = 0 implies
that the set of states annihilated byQ contains not only the states for which
(4.18) hold but also additional states for which (4.29) hold. However,Q̄ |ψ〉 = 0
guarantees that the set of states annihilated byQ̄ contains only the states for which
(4.18) hold, simply becauseB† |ψ〉 6= 0 andD† |ψ〉 6= 0. Thus in this alternative
way also, we see that the states satisfyingQ |ψ〉 = Q̄ |ψ〉 = 0 (i.e., satisfying
(4.33)) are only those states that satisfy the constraints of the theory and also
that these states belong to the set of BRST invariant and anti-BRST-invariant
states.

5. SUMMARY AND DISCUSSIONS

In this paper we have studied a GNLSM in the LF frame, that is, on the
hyperplanesx+ = (x0+ x1)/

√
2= constant. The theory in the instant form

(Kulshreshtha, 2001) is also seen to be GI possessing a set of five first-class
constraints where two constraints are primary and three are secondary. The LF
theory also possesses a set of five first-class constraints where three constraints
are primary and two are secondary. The theory remains GI in both the cases as the
matrix of the Poisson brackets of the constraints of the theory in both the cases
(IF and LF) remains singular signifying that the sets of the (total number of) con-
straints in both the cases remains first-class. Also, in both the cases, there does not
exist any problem with respect to the operator ordering as one encounters it in the
case of usual (ungauged) NLSM.
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